

Efeito Mpemba

FOCO

7º e 9º ano

HABILIDADES DA BNCC

EF07Cl02 e EF09Cl01

O INESPERADO

E O QUESTIONAMENTO

Em 1969, o estudante
Erasto Mpemba, da
Tanzânia, participava
de aula de culinária de
produção de sorvete
quando ficou intrigado
com uma constatação.
Depois de preparar uma

mistura quente de leite com açúcar, a recomendação era esperar que ela esfriasse um pouco para colocá-la no congelador. Impaciente, Erasto decidiu pôr a forminha ainda quente no freezer. Depois de algum tempo, constatou que o sorvete que fizera havia solidificado antes da receita dos colegas que tinham esperado a mistura esfriar antes de ir para o congelador. O efeito curioso já havia sido percebido e

registrado séculos antes

por Aristóteles, e depois,

por Francis Bacon e René

Descartes. Mas não havia

a justificativa para o resultado e elaboração de teoria a respeito. Anos depois da aula de sorvete, Mpemba escreveu um artigo científico sobre o tema em parceria com seu professor de Física. Após muitos estudos nos anos seguintes, em 2017, pesquisadores das universidades Southern Methodist (Estados Unidos) acreditaram ter chegado a uma explicação. Mas, em agosto, novamente as justificativas foram colocadas à prova com estudos apresentados por pesquisadores da Simon Fraser University (Canadá).

O que se sabe até agora

é que a explicação para o efeito – que ainda segue com estudo em curso – pode estar relacionada às mudanças ocorridas nas ligações de hidrogênio presentes na água quando aquecida ou resfriada.

PARA TRABALHAR

COM OS ALUNOS

Antes de contar a história da vivência do garoto
Mpemba, questione os estudantes sobre o que eles acham que pode acontecer quando levamos algo quente ou morno ao freezer ou congelador e colocar em jogo se o frio é ou não uma propriedade física.

FOCO

9º ano

HABILIDADES DA BNCC

EF09CI06 e EF09CI07

A SURPRESA

E A DESCOBERTA

Ao trabalhar com tubos de raios catódicos (compostos por elétrons que se originam no interior de tubos cheios de gás rarefeito), o físico alemão Wilhelm Roentgen (1845–1923) percebeu que os tubos iluminavam o ambiente com um feixe de luz de coloração verde.

Quando colocou a mão
em frente à ela, pôde ver
a imagem dos próprios
ossos. Já a partir do ano
dessa descoberta, em 1895,
a tecnologia, batizada de
raio-X (o raio Roentgen),
foi aprimorada com chapas
fotográficas, e usada
em hospitais.

Mais adiante, o físico francês
Antoine Henri Becquerel
(1852-1908) passou a
estudar a fosforescência do
raio-X. Em experimento feito
com placas, ele observou
a interação da luz nos sais
de urânio presentes, o que,
mais tarde, foi confirmado
ser efeitos da radioatividade

- termo cunhado pela

cientista polonesa Marie
Curie (1867-1934), que
junto de seu marido, o
francês Pierre Curie (18591906), dividiu o Prêmio
Nobel da Física de 1903 com
Becquerel, pela descoberta.

PARA TRABALHAR

COM OS ALUNOS

Você pode discutir com a turma como é importante que, em ciência, não se desprezem novidades que aparecem no decorrer de uma experiência e apresentar a história do raio-X. Pode também usar o fato para discutir o papel da radiação na medicina.

FOCO

6° e 7° ano

HABILIDADES DA BNCC

EF06Cl04 e EF07Cl11

O DESVIO E A INVENÇÃO

Em 1928, o médico escocês
Alexander Fleming (18811955) estava debruçado
em seus estudos em
bacteriologia, quando
notou o crescimento de um
fungo nas amostras com
cepas de *Staphylococcus*(grupo de bactérias da
flora residente no corpo
humano). Diferentemente

de outras amostras onde as bactérias se desenvolviam normalmente, as contaminadas com o fungo morreram. Fleming identificou a linhagem do fungo, chamando-o de Penicillium chrysogenum. A manipulação deste fungo gerou a penicilina que, testada em humanos a partir de 1940, abriu espaço para a era dos antibióticos – remédios de baixo custo que se tornaram imprescindíveis no combate de doenças como sífilis, gangrena gasosa, meningite bacteriana, endocardites bacterianas, amigdalites, faringites,

epiglotites, entre outras.

PARA TRABALHAR

COM OS ALUNOS

Apresente a história da descoberta da penicilina para a classe e explore como algo que aparentemente "deu errado" não deve ser descartado.