

Resolução da Atividade de RaioX MAT8_06NUM03

(A) Com as cores azul, vermelha, branca e preta, quais são as formas diferentes que podemos colorir a placa ao lado, usando duas cores diferentes por vez? Solução: (Há outras construções para este diagrama)

Usaremos a primeira letra de cada cor para representá-las no diagrama abaixo:

As combinações de cores que podemos fazer são: (A,V); (A,P); (A,B); (V,A);(V,P); (V,B); (P,A); (P,V); (P,B); (B,A); (B,V); (B,P).

Se quisermos usar uma tabela ao invés de um diagrama, só devemos ter o cuidado de desconsiderar os combinações de duas cores iguais.

cor da seta→ cor externa↓	Azul	Vermelha	Preta	Branca
Azul	XXXXXXXX	(A,V)	(A,P)	(A,B)
Vermelha	(V,A)	XXXXXXXX	(V,P)	(V,B)
Preta	(P,A)	(P,V)	XXXXXXXX	(P,B)
Branca	(B,A)	(B,V)	(B,P)	XXXXXXXX

Fazendo um sorteio entre 4 fichas numeradas de 0 a 3 e em seguida lançando-se um dado, quais são as possibilidades para o resultado?

(B) Explique por que podemos calcular o número de combinações diferentes sem necessariamente especificar uma por uma?

Solução: (Há outras respostas equivalentes)

Observando o diagrama ou a tabela, percebemos que escolhida a cor para a parte externa (4 opções), para a seta sobram 3 opções de cores pois não queremos repetição. Numericamente, fizemos a escolha em duas etapas distintas:

1ª decisão: Escolhemos a cor da parte externa, temos 4 opções para esta escolha.

2ª decisão: Escolhemos a cor da seta, temos 3 opções para esta escolha, pois não podemos usar cores repetidas. Então, nossa escolha foi feita em 4 e 3 formas distintas e neste caso, podemos usar o princípio multiplicativo para obter o número de combinações, ou seja: 4 x 3 = 12.